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Abstract

Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the
three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting
the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-
uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate
anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic
nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-
tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic
fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear
to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Magnetic fluids are colloidal suspensions containing sur-
factant-coated magnetic nanoparticles dispersed in carrier
liquids such as oil and water. As functional fluids, they
have attracted much attention over the past decades. So
far, they have been applied in many fields such as mechan-
ical engineering, bioengineering, thermal engineering, etc.
[1–2]. The magnetic particles in the magnetic fluid can
interact easily with an applied magnetic field, which in turn
can influence the microstructure of the fluids. Experiments
have shown that in the presence of an external magnetic
field the magnetic particles tend to form chainlike clusters
along the magnetic field direction. Many numerical simula-
tion methods such as the Monte Carlo (MC) method,
Brownian Dynamics (BD) method and Molecular Dynam-

ics (MD) method have been widely used for studying the
microstructure of magnetic fluids under the influence of
an external magnetic field. Akira et al. used MC method
[3,4] and BD method [5] to investigate the microstructure
of magnetic fluids in the presence of an external magnetic
field. They compared the results obtained under different
conditions. By taking into account the effects of non-spher-
ical particle shape, Yoshihisa and his coworkers [6] studied
the microstructure of magnetic fluids by the BD method. Li
et al. [7] studied the microstructure of magnetic fluids in
both absence and presence of an external magnetic field.
They analyzed the dependence of the aggregation structure
on both the particle–particle interaction strength and the
magnetic field strength. All that research suggested that
the magnetic particles tend to form chain-like clusters
along the direction of the magnetic field. With increasing
the magnetic field strength, the chainlike clusters become
more obvious. Experimental reports [8,9] have shown that
in the presence of an external magnetic field, the thermal
conductivity of the magnetic fluids presents an anisotropic
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feature. The thermal conductivity of magnetic fluids along
the magnetic field direction is bigger than that along other
directions. With increasing the magnetic field strength, the
anisotropy of heat conduction in the magnetic fluid
becomes more evident. The analysis above suggests that
the anisotropic heat conduction in the magnetic fluid may
result from the anisotropic microstructure of the magnetic
fluid. Currently, the research concerning this is mainly lim-
ited to experimental methods. It is very necessary from a
theoretical point of view to make clear the heat conduction
mechanism in the magnetic fluids.

The purpose of this paper is to investigate the non-uni-
form distribution characteristic of particles in the magnetic
fluids and the anisotropic heat conduction in the magnetic
fluids. The microstructures of magnetic fluids in the pres-
ence of different external magnetic fields have been simu-
lated to investigate the effect of the magnetic field on the
aggregate structure of magnetic fluids. By taking into
account the non-uniform distribution of particles in the
magnetic fluids a prediction model for the thermal conduc-
tivity of magnetic fluids is proposed. Then the relationship
between the microstructure and heat conduction in the
magnetic fluid is analyzed. By modifying the particle vol-
ume fraction of the magnetic fluids, the traditional Max-
well formula is extended to calculate the anisotropic
thermal conductivity of magnetic fluids.

2. Simulation of the microstructure of magnetic fluids

2.1. The model for motion

We assume that the magnetic particles are spherical and
the surface is coated with a surfactant layer. Each particle
is composed of a single magnetic domain. The interactions
between particles are complicated. We take into account
the dipolar interaction potential [10], the van der Waals
attraction potential [11], the repulsion potential due to
the overlapping of the surfactant layers [12] and the parti-
cle-field interaction potential [1]. According to these poten-
tials, the forces and torques acting on the particles can be
obtained [7]. Fm

ij denotes the force acting on the ith particle
due to the dipolar interaction between two particles i and j,
Fv

ij the van der Waals force, Fs
ij the short range repulsive

force due to surface surfactants, Tm
ij the torque due to the

dipolar interaction, Th
i the torque due to the external mag-

netic field, FB
i and TB

i are the random force and the random
torque due to the collisions with solvent molecules [13]. The
net external force Fi ¼ Rj–iðFm

ij þ Fv
ij þ Fs

ijÞ þ FB
i drives the

magnetic particle and the net torque Ti ¼ Rj–iT
m
ijþ

Th
i þ TB

i rotates the magnetic particle simultaneously. The
Langevin equations for both translational and rotational
motions are expressed as

m
dvi

dt
þ ntvi ¼ F i ð1Þ

I
dxi

dt
þ nrxi ¼ T i ð2Þ

where m and I are the mass and the moment of inertia
respectively, nt = 3pdg is the translational drag force coef-
ficient, nr = pd3g the rotational drag force coefficient, d the
diameter of the particle, g the viscosity of the base liquid, vi

the velocity of the particle, and xi is the angular velocity of
the particle.

Considering the force Fi in Eq. (1) and Ti in Eq. (2) as
constants and supposing that a particle starts at the initial
velocity v0

i and the initial angular velocity x0
i , the instanta-

neous velocity and angular velocity of the particle are
obtained as

vi ¼ v0
i e�

nt
mt þ F i

nt
ð1� e�

nt
mtÞ ð3Þ

xi ¼ x0
i e�

nr
I t þ T i

nr
ð1� e�

nr
I tÞ ð4Þ

The equations of motion of ri and ni for interacting parti-
cles can be described as

dri

dt
¼ vi ð5Þ

dni

dt
¼ xi � ni ð6Þ

Suppose that we know the initial position r0
i and the initial

magnetic moment n0
i of the particle. By integrating Eqs. (5)

and (6), we can obtain the position and the dipole moment
of the particle after a short time interval Dt.

ri ¼ r0
i þ

m
nt

v0
i �

F i

nt

� �

ð1� e�
nt
mDtÞ þ F i

nt
Dt ð7Þ

ni ¼ n0
i þ

I
nr

x0
i �

T i

nr

� �

ð1� e�
nr
I DtÞ þ T i

nr
Dt

� �

� n0
i ð8Þ

2.2. Results and discussion

We carry out the numerical simulations mentioned
above to study the microstructures of magnetic fluids. N

spherical particles of diameter of 20 nm are placed in a
cubic cell with a side length of 22 d. The thickness of the
surfactant layer (d) is 3 nm. Periodic boundary conditions
are imposed in all spatial directions. The cut off distance
of the interactive potentials is Rc = 200 nm; the bulk mag-
netic moment of each particle is n = 2.0 � 10�18 A m2; and
the temperature is T = 293 K. Non-dimensional parame-
ters kh is defined as

kh ¼
l0nh
kT

ð9Þ

where l0 is the permeability, n the bulk magnetic moment,
k the Boltzmann constant, and kh the energy of a magnetic
dipole in the magnetic field relative to the thermal energy.
As the temperature and the magnetic moment are both
constant, a high value of kh indicates a strong magnetic
field.

In the presence of different external magnetic fields, the
microstructures of magnetic fluids with different particle
volume fractions are simulated. The simulation starts at a
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random particle distribution. After 2 � 105 steps, the
aggregation of particles reaches a steady state. Then, the
magnetization of the magnetic fluid is obtained over
another 50000 steps. The magnetization is a parameter
which reflects the influence of the magnetic field on the tro-
pism of particle’s magnetic moment. It is defined as
M ¼ Ri��ni

V , where ��ni is the component of magnetic moment
ni in the magnetic field direction; and V the volume of
the simulation cell. When all the particles align heir mag-
netic moments along the magnetic field direction, the mag-
netization reaches saturation Ms.

The simulation results show that without an external
magnetic field the magnetic particles in the magnetic fluid
aggregate to form clusters due to the particle–particle inter-
action, and when an external magnetic field is applied the
magnetic particles tend to form chainlike clusters along
the magnetic field direction. With the increase of field
strength, the tendency of forming chain structures becomes
more evident. For a relatively weak magnetic field, some
short chains will be formed along the magnetic field. For
a stronger magnetic field, much longer and straighter chain
structures are formed along the magnetic field direction.
Fig. 1 shows the microstructure of the magnetic fluid with
particle volume fraction / = 1 at kh ¼ 5. The magnetiza-
tion of the magnetic fluid can characterize the aggregation
structure of the magnetic fluid. In the presence of an exter-
nal magnetic field, the magnetic particles align their
moments along the magnetic field direction. And the parti-
cles aggregate to form chainlike clusters. With the increase
of the magnetic field strength, more particles align their
moments along the magnetic field direction and the chain-
like structure becomes more obvious.

Fig. 2 shows the magnetization curves of magnetic fluids
with different volume fractions. It is obvious that the mag-
netization curves differ from each other. The differences are
primarily due to the interparticle interactions. In a dilute
magnetic fluid (/ = 1), the interparticle interactions are
weak and its effect on the magnetization is negligible. In
the presence of a relatively weak magnetic field (kh ¼ 5)
the magnetization gets close to saturation and the chainlike
structure of particles aggregates appears distinctly. With
further increase of the magnetic field strength, the magne-

tization of the magnetic fluid increases very slowly and
the aggregation structure of particles does not change
much. For a large volume fraction / = 5, the strong inter-
particle interactions will restrain the magnetization of the
magnetic fluid. Under the influence of a relatively weak
field, the magnetization is small and the aggregation struc-
ture of particles in the magnetic fluid is mainly short
chains. With increasing the magnetic field strength, the
magnetization further increases and the chainlike structure
in the magnetic fluid becomes more obvious.

3. Computation of thermal conductivity of magnetic fluid

When the magnetic dipole moment energy is stronger
than the thermal energy, the magnetic particles tend to
form chainlike clusters under the influence of an external
magnetic field and the Brownian motion of the particles
will be severely restricted due to the strong particle–particle
interactions. This study aims at investigating the effect of
aggregation structure on the heat conduction in the mag-
netic fluids, the model for the thermal conductivity of mag-
netic fluid is based on the microstructure of the magnetic
fluids and the effect of particles’ motion on the thermal
conductivity is neglected.

3.1. The model for thermal conductivity

The model of thermal transport in magnetic fluid is
shown in Fig. 3. The cubic cell is filled with magnetic par-
ticles and base liquid. At the steady state, the equation for
heat conduction in magnetic fluid can be expressed as

@

@x
kx
@T
@x

� �

þ @

@y
ky
@T
@y

� �

þ @

@z
kz
@T
@z

� �

¼ 0 ð10Þ

where kx, ky and kz are, respectively, the thermal conduc-
tivity along x, y and z directions. By setting different
boundary conditions of the cubic cell, the heat flux in the
cell can be controlled. As shown in Fig. 3, the up and down
boundaries of the cell are at uniform, and constant temper-
ature and the other boundaries are insulated. In this case,
the heat flux is along the z direction. These boundary con-
ditions are described as follows:Fig. 1. Microstructure of magnetic fluid.

Fig. 2. Magnetization curves of magnetic field.
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T jz¼0 ¼ T 2; T jz¼L ¼ T 1 ð11Þ
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�
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�
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x¼0
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�

x¼L

¼ 0 ð12Þ

Three-dimentional uniform grids are generated in the cell
and finite-difference equations are obtained by using the
energy balance method. The heat flux from grid (i-1, j, k)
to grid (i, j, k) can be expressed as

qx ¼
kx�

i;j;kðT i�1;j;k � T i;j;kÞ
Dx

ð13Þ

As shown in Fig. 4, the heat fluxes to grid (i, j, k) from its
other adjoining grids are qx+Dx, qy, qy+Dy, qz, qz+Dz.

The energy balance equation for node (i, j, k) is
expressed as

qx þ qxþDx þ qy þ qyþDy þ qz þ qzþDz ¼ 0 ð14Þ

Substituting the heat flux expression into Eq. (12), we ob-
tain

where kx�
i;j;k; k

xþ
i;j;k; k

y�
i;j;k; k

yþ
i;j;k; k

z�
i;j;k; k

zþ
i;j;k are the effective thermal

conductivities on the interfaces of nodal region (i, j, k). The
effective thermal conductivity k on the interface of two
neighboring grids is calculated by the harmonic mean:

k ¼ 2k1k2

k1 þ k2

ð16Þ

where k1 and k2 are, respectively, the thermal conductivities
of two neighboring grids. We use the SOR iteration meth-
od to solve the finite-difference equations. After the tem-
perature distribution is obtained, the heat flux through
every grid can be determined by Fourier’s law. The total
heat flux Qz through any cross section can be obtained
by summing the grid heat flux included in the cross section.
Using Fourier’s law, the thermal conductivity along the z

direction is obtained as

kez ¼
Qz

LðT 1 � T 2Þ
ð17Þ

By changing boundary conditions of the cell, namely,
changing the heat flux direction, we can get the thermal
conductivity along the x direction kex and that along the
y direction key.

3.2. Thermal conductivity of grid

When we generate 3D uniform grids in the cell, the grids
can be classified into three types: (1) the grid is filled with
base liquid, so the thermal conductivity of the grid equals
the base liquid’s thermal conductivity; (2) the grid is filled
with part of a particle, so the thermal conductivity of the
grid equals the particle material’s thermal conductivity;
(3) the grid is filled with both base liquid and part of a par-
ticle, the thermal conductivity of the grid can be deter-
mined by the following two methods.

3.2.1. Method I

We calculate the thermal conductivity of the third type
grid by the weighted average of the base liquid’s thermal
conductivity and the particle material’s thermal conductiv-

ity according to the volume ratio of the base liquid and the
particle in the grid.

3.2.2. Method II

Using the method mentioned in Section 3.1, we can get
the thermal conductivities of the third type grid along x, y

and z directions. Because the third type grid consisted of
base liquid and part of a particle, when we generate sub-
grids in the third type grid, the sub-grids also can be clas-
sified into three types. We use Method I to compute the
third type sub-grids’ thermal conductivity. Therefore,
Method II takes into account the anisotropic heat conduc-
tion in the local grid region. Its precision is higher than that

Fig. 3. Model of heat conduction in magnetic fluid.

Fig. 4. Conduction into a grid from its adjoining grids.

T i;j;k ¼
kx�

i;j;kT i�1;j;k þ kxþ
i;j;kT i�1;j;k þ ky�

i;j;kT i;j�1;k þ kyþ
i;j;kT i;j�1;k þ kz�

i;j;kT i;j;k�1 þ kzþ
i;j;kT i;j;k�1

kx�
i;j;k þ kxþ

i;j;k þ ky�
i;j;k þ kyþ

i;j;k þ kz�
i;j;k þ kzþ

i;j;k

ð15Þ
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of Method I. In the following calculations we use Method
II to calculate the third type grid’s thermal conductivity.

3.3. Precision analysis

To estimate the validity of the present method, the ther-
mal conductivities of magnetic fluids with a small particle
volume fraction are calculated. The results are compared
with those of the Maxwell formula (Table 1). In the
computation, the temperatures of the up and down bound-
aries are set to be T1 = 300 K and T2 = 500 K, respectively.
At the room temperature T = 293 K, the thermal
conductivities of particle material and base liquid are
kp = 6.0 W/mK and kf = 0.6 W/mK, respectively.

The Maxwell formula is expressed as [14]

ke

kf
¼ kp þ 2kf � 2uðkf � kpÞ

kp þ 2kf þ uðkf � kpÞ
ð18Þ

Table 1 shows that the results of the two methods are in
good coincidence. It indicates that the present method
has a high precision in calculating the effective thermal con-
ductivity of magnetic fluid.

3.4. Results and discussions

The thermal conductivity of magnetic fluid both parallel
to the magnetic field direction (z direction) and perpendic-
ular to the magnetic field direction (x and y directions) are
calculated. Fig. 5(a) shows the thermal conductivities of
magnetic fluids with different volume fractions in the
absence of an external magnetic field. It is obvious that
the thermal conductivity of the magnetic fluid is larger than
that of the pure base liquid. And the thermal conductivity
of the magnetic fluid increases with the increase of the par-
ticle volume fraction. The reason is that the particles have
larger thermal conductivity than pure base liquid. The sus-
pended particles in the base liquid enhance the thermal
transport in the fluid, which leads to the magnetic fluids
having larger thermal conductivity than pure base liquid.
For a higher particle volume fraction, there are more par-
ticles suspended in the base liquid. Hence, the magnetic
fluid has a higher thermal conductivity. Furthermore, the
thermal conductivities along different directions are the
same. The reason is that in the absence of an external mag-
netic field, although some dispersive clusters are formed in
the magnetic fluid, the distribution of particles is isotropic.

Therefore, the thermal conductivity of the magnetic fluid is
isotropic.

Fig. 5(b) shows the thermal conductivities of magnetic
fluid along different directions in the presence of a strong
magnetic field (kh ¼ 20). It is obvious that the thermal con-
ductivities along x and y directions are the same, and both
smaller than that along z direction. The thermal conductiv-
ity presents an anisotropic feature. With the increase of the
magnetic field strength, the anisotropic feature of the ther-
mal conductivity becomes more evident. The reason is that
in the presence of a strong magnetic field, the particles form
chainlike structures along the magnetic field. The particle
chains provide more effective bridges for the thermal trans-
port process along the direction of the magnetic field. With
increasing particle volume fraction, the number of particles
suspended in the fluid increases and more chains appear in
the magnetic fluid, and the thermal conductivity along the
magnetic field further increases. Hence, the anisotropy of
the thermal conductivity becomes more evident.

Fig. 6(a) illustrates the thermal conductivity of a mag-
netic fluid (along x direction) with different particle volume
fractions. A little change in the thermal conductivity is
found with increasing magnetic field strength. Although
in the presence of an external magnetic field, the particles
form chainlike structures in the magnetic fluid, the particle
chains affect weakly the thermal transport in the magnetic
fluid perpendicular to the chain direction.

Fig. 6(b) shows the thermal conductivity of the magnetic
fluid along the magnetic field direction with different

Table 1
Thermal conductivity of magnetic fluid with uniform particle distribution.

Particle volume
fraction (%)

Maxwell formula
(W/mK)

Present method
(W/mK)

Relative
error (%)

1 0.6136 0.6139 5
2 0.6274 0.6278 6
3 0.6414 0.6420 9
4 0.6557 0.6565 12
5 0.6701 0.6711 15

Fig. 5. Thermal conductivity of magnetic fluid in the absence of an
external magnetic field (a) and in the presence of an external magnetic field
(b).
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particle volume fractions. It is obvious that the thermal
conductivity of the magnetic fluid increases with the
increase of the magnetic field strength. This is because that
with the increase of the magnetic field strength, the magne-
tization of the magnetic fluid increases and the chainlike
structures in the magnetic fluid become more obvious.
The particle chains provide more effective bridges for ther-
mal transport along the direction of the magnetic field.
When the magnetization of the magnetic fluids gets close
to the saturation, a little change in the chainlike structures
occurs and a little thermal conductivity increment is found
with the further increase of magnetic field strength.

In a word, the morphology of magnetic particles sus-
pended in base liquid controls the energy transport inside
the magnetic fluid. Therefore, it is possible to control the
heat transfer process inside the magnetic fluid through
changing the aggregation structure of particles by applying
an external magnetic field.

4. The modification of the Maxwell formula

The analysis above indicates that the morphology of
magnetic particles suspended in base liquid controls the
energy transport inside the magnetic fluid. In fact, in the

presence of an external magnetic field, the distribution of
particles in the magnetic fluid is not uniform. The particle
volume fraction is a spatial function. Taking into account
the non-uniform distribution of particles, we introduce an
anisotropic structure parameter to modify the particle vol-
ume fraction of magnetic fluids and extend the traditional
Maxwell formula to calculate the anisotropic thermal con-
ductivity of the magnetic fluid. The main process is as fol-
low: By accounting for the relative ubiety between every
two particles in the simulation system, and then taking the
ensemble average, the anisotropic structure parameter in
different directions can be obtained. For example, the aniso-
tropic structure parameter in the x direction (Cx) is
expressed as

Cx ¼
1

N
R
N

i¼1
R
j>i

Cx
ij ð19Þ

Cx
ij ¼
ðnx � eijÞ2 � 1=4

ðrij=dÞ3
ð20Þ

where subscripts i and j are particle numbers, d is the diam-
eter of the particle, rij=ri-rj, rij=|rij|, eij=rij/rij, ri is the posi-
tion of the ith particle, nx is the unit vector along the x

direction.
In Eqs. (19) and (20), we can find that when the particle

volume fraction increases, the distance between two parti-
cles rij decreases, the value of the anisotropic structure
parameter Cx gets larger. And when the chainlike structure
along the x direction becomes more obvious, the value of
the anisotropic structure parameter Cx gets larger. The
anisotropic structure parameter Cx well characterizes the
distribution of particles along the x direction. By taking
into account the anisotropic structure parameter, the mod-
ified particle volume fraction is defined as /x = (1+Cx)/.
Substituting the expression of /x into Eq. (18), we obtain

kex

kf
¼ kp þ 2kf � 2uxðkf � kpÞ

kp þ 2kf þ uxðkf � kpÞ
ð21Þ

Eq. (21) is capable of calculating the thermal conductivity
of magnetic fluid along the x direction. We can use the
same method to calculate the thermal conductivity of mag-
netic fluid along the y and z directions.

The microstructures of magnetic fluids with different par-
ticle volume fractions have been obtained in the second part
of this paper. By modifying the particle volume fraction and
substituting the modified volume fraction into Eq. (21), we
calculate the anisotropic thermal conductivity of the mag-
netic fluids. Fig. 7 demonstrates the comparison of the
anisotropic thermal conductivity of magnetic fluids calcu-
lated by the modified Maxwell formula (real line) and those
computed by the numerical method mentioned in the third
part of this paper (dashed line). The comparison shows that
the results of the two methods are in good agreement. It
indicates that the modified Maxwell formula can be used
to calculate the anisotropic thermal conductivity of mag-
netic fluids with non-uniform particle distribution.

Fig. 6. Thermal conductivity of magnetic fluid perpendicular to the
magnetic field direction (x direction) (a) and along the magnetic field
direction (z direction) (b).
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5. Conclusions

The microstructure of magnetic fluid under the influence
of an external magnetic field has been investigated by the
numerical simulation method and the anisotropic heat con-
duction in the magnetic fluid has been analyzed. A numer-
ical method for predicting the anisotropic thermal
conductivity of magnetic fluid has been proposed.

By introducing an anisotropic structure parameter which
characterizes the non-uniform distribution of particles in the
magnetic fluid and modifying the particle volume fraction
involved in Maxwell formula, the traditional Maxwell for-
mula is modified and extended to calculate anisotropic ther-
mal conductivity of the magnetic fluid.

The aggregation structure of magnetic particles con-
trols the heat conduction in the magnetic fluid. In the
absence of an external magnetic field, the distribution of
particles in the magnetic fluid is disordered and the ther-
mal conductivity of magnetic fluid is isotropic. In the

presence of an external magnetic field, the particles form
chainlike clusters along the magnetic field direction, which
leads to an increment in the thermal conductivity along
the chain direction and almost no change in the thermal
conductivity perpendicular to the chain. The thermal con-
ductivity presents anisotropic feature. With the increase of
the magnetic field strength, the chainlike structure
becomes more obvious and the anisotropic feature of heat
conduction in the magnetic fluid becomes more evident.
Furthermore, with increasing the particle volume fraction,
more chains appear in the magnetic fluid and the aniso-
tropic feature of heat conduction in the magnetic fluid
becomes more evident.
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